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Introduction

ECENT flight testing of aircraft designed to maneuver

at very high angles of attack suggest that such capabilities
may be useful in future fighter aircraft. Inexpensive compu-
tational tools that accurately predict forces and moments at
high angles of attack may be useful for the conceptual design
of such aircraft. The vortex lattice method (VLM) has long
been used as an analysis tool for attached flow cases. More
recently,'? VLM has been used with empirical vortex burst
data to give good predictions of trim requirements at higher
angles of attack. In the current work, a vortex core model is
analytically derived in a form that allows it to be easily in-
corporated into the VLM. Vortex burst locations predicted
by the coupled vortex burst model/vortex lattice method (VBM/
VLM) for several swept wings at high angles of attack are in
good agreement with empirical data. This makes it possible
to substitute model-predicted burst points for the empirical
data of Refs. 1 and 2.

Formulation

A model for the vortex core is derived from the steady,
incompressible Navier—Stokes equations written for a cylin-
drical coordinate system centered on the vortex core. The
derivation follows, in general, the approaches developed by
Mager® and Krause* and extends the method described in
Refs. 5 and 6. The vortex is assumed to be slender and axi-
symmetric. The u, v, and w velocities are defined in the x, 7,
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and € cylindrical coordinate system aligned with the vortex
central axis. The following variables are defined:
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where L is the length of the vortex to the wing trailing edge,
8, is the vortex core radius at x = L, and p, u, and U, are
freestream density, viscosity, and velocity, respectively. The
overbars denote dimensionless quantities, but will be omitted
in the subsequent analysis.

As in Ref. 6, the ratio of the vortex core diameter to the
vortex length is assumed to be of the order of the inverse of
the square root of the Reynolds number. After eliminating
terms that become negligible for large Reynolds numbers, the
nondimensional equations of motion become
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Algebraic profiles for radial variation of axial and circum-
ferential velocity are chosen and Eq. (1c) is integrated from
r = 0 to r = 8. For physically reasonable choices of velocity
profiles, the integrated form of Eq. (1c), after negligible terms
are discarded, is

px, 0) = p(x, 8) — K (T%a) @
where
a= 6> and I = 27wéw,

The subscript & denotes quantities at the core edge and K,
depends on the choice of the w velocity profile.

The previously chosen u profile is next used in Eq. (1a) to
determine the corresponding v profile. Then, Eq. (1d) is in-
tegrated over the area of the vortex core to obtain

1
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where the values of K,, K,, and K, depend on the velocity
profiles chosen. If a simple solid body rotation is used for the
w profile, K, and K are zero and K, = 1, and so Eq. (3) can
be integrated with respect to x to yield

axT

If more complex w profiles are chosen, the expression for a
can still be approximated as

K M = Xo)

a = K
uf:

(4)

where K, depends primarily on the product Res. Assuming
that the core circumferential velocity profile is sufficiently
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close to a solid body rotation, the radial pressure distribution
can be approximated as

ple, ) = plx, 0) + (18)Yp(x, &) — p(x, )]  (5)

Using Egs. (2) and (5) one can integrate Eq. {(1b) over the
area of the core to obtain
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(6)
where the subscript 0 denotes quantities at the center of the
core.

For the present work, the simple case of a flat-plate delta
wing with a conical flow is considered. For these assumptions
the vortex strength increases linearly with the core length and
the core area increases with the square of the axial distance
from the origin. In effect, Eq. (6) describes an additional axial
pressure gradient that arises from the growth of the core and
strengthening of the vortex. This axial pressure gradient is
modified by any pressure gradient that exists in the external
pressure field, as it is transmitted to the core via the core
radial pressure balance. When bursting occurs, the pressure
gradient due to the core growth, with the possible help or
hindrance of the pressure gradient in the external pressure
field, acts to bring the axial flow in the core to rest. For the
purpose of integrating the model into the VLM, the initial
flow velocity at the origin of the vortex, as well as the external
pressure field along the length of the vortex at the edge of
the rotational core, are obtained from the VLM solution. The
core-edge pressure field is modeled as a linear scaled image
of the wing surface pressure field to avoid the necessity of
explicitly locating the vortex core. The flow quantities from
the VLM solution are used, along with the expression for core
area given by Eq. (4), to evaluate the integral of Eq. (6) with
respect to x to yield
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where the coefficient K, collects various constants from Eq.
(6), from the conical flow assumption, and from the scaling
of the external pressure field. I', represents the strength of
the vortex at the nondimensional x = L, and the subscripts
1 and 2 denote flow quantities at the vortex origin and the
point of interest, respectively. A singularity results if the or-
igin of the x, r, and @ coordinate system coincides with the
vortex origin. For convenience, this coordinate system is lo-
cated such that # (1/x,) = 1. This choice affects the value of
K, in the integration. At the point in the vortex where bursting
occurs, and hence, u, = 0, Eq. (7) simplifies to

(u5/2) + po,. — Po, = KoI'T te(Xours/X1) (8)

In practice, both sides of Eq. (8) are evaluated for the x
coordinate of each vortex panel in the VLM solution. If the
right-hand side (RHS) of Eq. (8) is greater than or equal to
the left-hand side, then bursting is determined to have oc-
curred at or upstream of that x location. The x coordinate
furthest upstream of the panels identified in this way is then
taken as the point of vortex bursting. In order to evaluate the
RHS of Eq. (8) it is necessary to determine the vortex strength.
This was done by using the total circulation on the wing in
the VLM solution, assuming that all of the circulation is shed
and rolled up into the vortex. This relationship, when com-
bined with Eq. (8) and simplified, using the fact that total
circulation in the VLM solution is proportional to total lift,
yields

AC, = Kj'Ci loe (xburs!/xl) (9)
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where C, is the wing lift coefficient and K is the final single
control constant for the vortex model, representing all of the
previous integration and control constants. Choosing a par-
ticular value for K, is, in part, choosing a circumferential
velocity profile for the vortex model, although many different
velocity profiles can produce the same value of K,. Larger
values of K, result in the onset of bursting at lower angles of
attack and more rapid forward progression of the burst point
with increasing «.

Results

Although the implementation of the model just described
is very simple and computationally inexpensive, the results
obtained to date are very encouraging. The particular VLM
code that has been used to test the VBM is described in Ref.
7. The VBM/VLM has been tested on two different delta
wings and one highly swept tapered wing. The first delta wing
(Fig. 1a) was a simple 60-deg true delta. The swept wing (Fig.
1b) had a 60-deg leading-edge sweep angle and an AR of
3.14. The wingtip of the swept wing was cut back at a 45-deg
angle to form a 90-deg angle with the trailing edge of the
wing. The third wing (Fig. 1c) was a 70-deg true delta.
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Fig. 1 Wing model geometries.
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Fig. 2 Vortex burst trajectories.

The control parameter K, in Eq. (9) is the only variable
needed to fine-tune the vortex-burst predictions. It was ad-
justed for the 60-deg delta wing to achieve onset of vortex
burst at the wing trailing edge at « = 13 deg. A value of 2.6
for K, gave this result. When this same value of K, was used
for VBM/VLM computations over a range of angles of attack
for each of the wing shapes tested, the vortex burst locations
shown in Fig. 1 resulted. Wind-tunnel values for burst loca-
tions on similar models from Refs. 8 and 9 are plotted in Fig.
2 for comparison. Note the good agreement between the model
and wind-tunnel data for all shapes tested.

Conclusions

A model for leading-edge vortex bursting has been devel-
oped and used with the vortex lattice method to predict vortex
bursting on highly swept wings. The model was derived from
the steady, incompressible Navier—Stokes equations for the
vortex core. The method was tested on four highly swept wing
models. In all cases vortex burst predictions agreed well with
the vortex burst locations observed in wind- and water-tunnel
tests.
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Nomenclature

damage function' (herein after referred to

as DF), which determines the value of

probability of killing the target on the
condition that the center of inertia of the
target is in a defined location in space

(x;, X, x3) related to the projectile blast

epicenter.

P, = the probability of killing the target when
at least a single hit is scored. It is the
average value of DF for the points
(x,, X, x3) contained within the target.

R, = random vector process or random vector
variable that describes ballistic dispersion.
It characterizes the location of a projectile
relatively to the average trajectory.

R, = random vector process or random vector

variable that describes aiming error. This

vector is characterized by a minimum
length during the projectile flight and is
equal to the difference between the radius
vector x,, of the point that overlaps the

il

Pr(xl’ X2, X3)
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